
A Formalised Real-time Concurrent
Programming Model for Scalable Parallel

Programming

Eric Verhulst and Bernhard H.C. Sputh

Altreonic NV Gemeentestraat 61A Bus 1; B3210 Linden; Belgium,
{eric.verhulst, bernhard.sputh}@altreonic.com,

http://www.altreonic.com

Abstract. While programmable hardware has become a commodity,
software development has not. On the contrary, systems are becoming
very heterogeneous, networked and complex. Modern control systems
combine very simple, yet smart sensors as well as parallel supercomput-
ing nodes that execute a simulation in the loop. Can we have a sin-
gle programming approach that gives us portability as well as scala-
bility in a hard real-time context? Can we meet the challenge of pro-
gram once, run everywhere, anytime? To tackle this issue, Altreonic has
adopted a formalized approach to embedded systems development. Of
particular interest is the formally developed OpenComRTOS, that al-
lows one to program distributed systems ranging from single node micro-
controllers, over multi-core to networks of heterogeneous networked pro-
cessing nodes, in a fully transparent way. The current implementation
can theoretically handle millions of nodes, still it only needs about 5
kBytes/node. Together with its tools it provides the core of OpenCom-
RTOS Designer.
This paper explains the underlying model called Interacting Entities that
underpins the programming model. The formal development resulted in
a very small code size which is beneficial for performance and power
consumption. Key figures for some target systems are given. The paper
concludes with some of the challenges faced when porting to advanced
multi/many core architectures.

1 Introduction

Users of embedded systems continuously expect more features. At the same
time processors are becoming cheaper and more powerful. However, user expec-
tations rise faster than the progress of the hardware. Hence, the evolution to
multi/many-core architectures while being enabled by technology advances, is
also a solution to achieve more performance at less energy costs. The question
is, how to program them?

OpenComRTOS was formallly designed using TLA+/TLC [1] to address
this issue. More details can be found in [2,3]. Building on the concepts of CSP
[4], Hoare’s Process Algebra and the experience with a previously developed

http://www.altreonic.com


parallel RTOS (Virtuoso) [5], the resulting programming paradigm was called
“Interacting Entities”. The top level requirements were to achieve a transparent
concurrent programming model for real-time embedded systems. This was called
the “Virtual Single Processor” programming model. At the API level, a program
is composed of “Tasks”, each having a private workspace and priority. Task syn-
chronise and communicate using instances of “Hubs”. A Hub has essentially two
components: a synchronisation predicate and an action predicate. Synchronisa-
tion can be implicit (e.g. when a boolean condition holds) or explicit (e.g. a send
request matches with a receive request). When synchronisation happens, the
action predicate is invoked. The latter is most often that the interacting Tasks
become active again after exchanging some data in the Hub but these actions
can be much more complicated, like e.g. progamming a DMA engine to copy
data.

Most Hubs represent the traditional RTOS services like Events, Semaphores,
FIFO, Resources, etc. Contrary to many other RTOS implementations, Hubs
are completely decoupled from the Tasks interacting with them and can reside
on any node in the system. This is a key property needed to provide scalability.

OpenComRTOS is built as a scheduler on top of a prioritised packet switching
and communication layer. It is designed to run on heterogeneous systems thus a
heterogeneous set of nodes, connected using a heterogeneous set of communica-
tion means (shared memory, fast point-to-point links, or switching networks). To
support this the programming approach separates the network topology from the
application topology, allowing cross development or simulation on single node
systems (like a PC). Once a program has been developed its entities (Tasks and
Hubs) can be remapped to a different topology without changing the source
code of the Tasks. Only a recompilation is needed and maybe some I/O drivers
will need to be modified. This is achievable because the Hubs, used by Tasks to
interact, are decoupled from the Tasks.

Next, we pay some attention to how real-time behaviour can be preserved
across a network. Besides a consequent use of prioritised packet switching any-
where in the system, of particular interest is the implementation of a distributed
priority inheritance protocol.

The Intel-SCC [6] is an experimental system which consists of 48 Pentium
cores which are inter-connected over a routing network. This routing network
also connects the cores to the four on-chip memory controllers, which support up
to 64GB of memory in total. Texas Instruments provides the TMS320C6678 [7],
which is a commercially available 8 core DSP where the cores and the peripherals
are interconnected using a bus called TeraNet. In the following we will refer
to this chip as TI-C6678. In this paper we compare the performance figures
of OpenComRTOS on both architectures and discuss some of the challenges
encountered.



2 Handling Real Time on Distributed Processing Systems

2.1 Real-time design principles of OpenComRTOS

Real-time behavior of applications is most commonly defined as the capability
to meet deadlines in a predictable way. In practice, this means that the statisti-
cal timing behaviour of the system is bounded. For example, the reaction time
between an interrupt and a Task reacting on it must have a known worst case
value that follows a bounded statistical distribution rather than e.g. a Poisson
distribution as is typical for soft real-time systems. On a single processor this
is achieved by the RTOS scheduler that schedules ready to run Tasks in order
of priority, thereby preempting currently running Tasks of lower priority. This
implies that Tasks receive a priority that is determined by a scheduleability
analysis. The most common technique is here Rate Monotonic Analysis [8,9,10],
whereby Tasks receive a higher priority if they run with a higher periodicity.
Note that other techniques exist as well. For example static scheduling is used
often in the context of safety critical systems or digital signal processing, but
this results in a rather rigid statemachine that while it is easier to verify at com-
pile time, can require extensive rework when changes are applied. In addition,
it makes handling real life asynchronous events problematic. Hence preemptive
priority based scheduling is still the best option for embedded real-time systems.

The question is now how can this be achieved in a distributed system? Ob-
viously, it is mandatory to have a preemptive priority based scheduler on each
processing node. The new element is that application Tasks now interact across
a network (or any other communication medium). This raises two questions.
Firstly, how do we assure that interacting Tasks are both active when inter-
acting? If not, a Task on a remote node will delay a local high priority Task.
Secondly, the communication medium itself poses a significant challenge. It is
generally slower than the processing nodes and it introduces a communication
delay. The communication delay itself has several contributing factors. There is
the scheduling latency for the send and receive communication drivers, there is
the processing and protocol latency of the drivers, there is the scheduling latency
of the communication medium and finally there is the physical delay introduced
by the communication itself. The communication medium is often not preemp-
tive, at the hardware level, and once a communication has started, it can’t be
interrupted.

A first solution, often practiced, is that each processing node has a local set
of Tasks, scheduled in order of the local priority. To communicate with other
Tasks on other nodes, a middleware layer is developed that runs on top of the
local (RT)OS. It is clear that this gives us no control over the global scheduling
across the system. In addition, middleware layers have a high overhead. The
result is that when Tasks start to communicate across the network, the global
scheduling adopts a FIFO-like behaviour because there is no global notion of
priority and hence the statistical spread of the response times can become very
wide.



For these reasons, OpenComRTOS adopted a few design principles reflected
in its architecture:

1. Priorities are system-wide and global.

2. Any Tasks becoming “waiting” (or “blocked”), wait in order of priority.

3. Any interaction service inherits the priority of the generating Task.

4. Inter-node communication is handled at the lowest level to reduce overhead.

5. Communication driver Tasks have a priority lower than the local Kernel
Task, but higher than the application Tasks. This is actually not a must,
but if not followed will introduce scheduling delays across the network.

6. All communication is based on Packet switching. This limits the communi-
cation delay to the transmission time of a single Packet.

7. All communication is scheduled in order of priority.

8. Priority inheritance operates system wide.

If the hardware allows it, following these architectural guidelines assures a
minimum delay for all Tasks and strictly limits the communication delay.

However, the attentive reader can make following remarks. Firstly, the com-
munication delay is still present. This is unavoidable as the communication
medium is a shared hardware resource. However, the packet switching mech-
anism has limited the maximum communication delay. This delay is a trade-off
between the application level bandwidth and the responsiveness of the system.
Shorter packets result in more responsive systems but given that the scheduling
overhead (set-up latency) is per Packet, application bandwidth will be reduced.
Secondly, how to distribute the Tasks and assign their priorities? In practice,
this can be achieved by a combination of off-line analysis, profiling and using
scheduleability analysis tools, such as MAST [11] and other. Experience shows
that many parallel applications have a dominant dataflow pattern that can be
exploited to “cluster” the Tasks and dataflows on neighbouring nodes. Using
profiling often a reasonable good mapping from the application to the hardware
topology can be found. For embedded systems, the complexity comes often from
the fact that real applications have mixed real-time modes. In dataflow process-
ing for instance, the data collection part will always run with a high priority,
while the priority of the subsequent processing stages depends on what informa-
tion is found in the data. Simultaneously, the system will have supervisory Tasks
that can execute in the background (low priority) but move to the foreground
(high priority)when a potential failure condition is detected.

Another element to mention as well is that parallel system level performance
very much depends on how efficient data can be moved around (without) bringing
the processors to their knees by e.g. bus access starvation. In general this means
that the ideal system avoids high latency shared memory, uses DMA engines to
copy the data without using CPU power and preferably provides direct, point-
to-point communication between nodes. In the absence of this, intermediate
nodes will need to buffer the data and the end-to-end communication delay will
increase.



2.2 Priority Inheritance

A fundamental problem that plagues any hard real-time system is the use of
shared resources. We have already identified some system resources, for example
the CPU itself, the communication medium and shared memory. Often shared
resources need not only be shared but their state also needs to be protected
while owned by e.g. a driver or application Task. For sharing the CPU, we
proposed preemptive priority based scheduling, implying that a “context switch”
is available and provided by the (RT)OS Kernel. For sharing the communication
medium, we introduced prioritised Packet switching. For sharing memory, we can
propose several solutions that protect the memory by providing sequential access
(mostly needed for writing only) but the simplest one is to use a Resource lock, a
particular type of OpenComRTOS Hub. These can be used as a logical protection
mechanism. Resources however have the well know problem of priority inversion,
whereby lower priority Tasks can block higher priority Tasks from continuing.
This phenomenon was made famous with the first Mars Rover [12,13] whereby
the blocked Task kept timing out thereby resetting the CPU. The problem is
remedied, but not fully solved, by boosting temporarily the priority of the lower
priority Task to the priority of the higher priority one that also want to use the
resource. This algorithm, often applied with a predefined priority ceiling, greatly
reduces the blocking time and prevents e.g. time-outs.

The issue with a multi-node system is now that a Resource can be shared
by multiple Tasks, residing on multiple nodes. A typical yet simple case is the
use of a shared terminal or screen. In order to avoid that the output on the
screen becomes garbled, a Resource is used to assure atomic access, for example
allowing to print one line of characters in one operation. The implementation
of priority inheritance on a single processor is fairly simple because the kernel
has local direct access to the kernel datastructures. In a distributed system,
Resource requesting Tasks as well as the Resource can reside on different nodes.
In addition, the Tasks can be engaged in other interactions and hence be waiting
on yet another node. Therefore, a distributed priority inheritance algorithm was
implemented. When a Task requests a Resource that is owned by a lower priority
Task, the local kernel Task will issue a “boost priority” request to the Node
where the Resource owning Task is managed at that moment. Two issues need
to be overcome. Firstly, the “boost priority” request travels as a request Packet
through the network and this means that the status of the Task can have changed
during the transit interval. Secondly, during the same interval another Task with
an even higher priority can also have issued a Resource request. Hence, the
implementation takes this into account by splitting the Resource allocation in
two phases. In the first phase the Resource is “reserved” but not yet allocated.
The Resource is only allocated when the Task become active. The boost priority
request also results in waiting lists on which a Task resides to be resorted as
indicated in the previous section.

While the implementation requires several Packets to be exchanged between
the nodes, the resulting extra code size was measured to be 728 bytes (instruc-
tions) on an ARM Cortex-M3 after compilation with Os.



2.3 Inter Core Communication

OpenComRTOS is designed to allow the development of distributed heteroge-
neous systems. This means that it provides the capability to build systems con-
sisting of multiple CPUs interconnected over various communication means, such
as RS232, Ethernet, shared memory and now also the Intel-SCC Message Pass-
ing Buffers (MPB). The communication between different Nodes of the system
is handled by so-called transfer-packets, which have system wide the same struc-
ture. The transfer-packet consist of a 32 B header and a variable amount of
payload data. When a Task issues a service request to a Hub that is located
on another Node, then the Kernel-Task routes the service request packet to the
corresponding Link Driver to transfer it to its destination Node. The routes
are precalculated during the build process and do not change during run-time,
relieving the application from any explicit routing.

3 Multi/Many Core Targets OpenComRTOS Supports

OpenComRTOS has been ported to two multi/many core targets up to now.
The first target was the Intel-SCC, followed by the TI-C6678.

3.1 Intel SCC

The Intel SCC is composed of 48 Pentium cores (running at 533 MHz), each
with 16 kB data and program caches and 256 kB L2 cache. Each tile, which
consists of two cores, provides a 16 kB large Message Passing Buffer (MPB).
In the link driver implementation we assigned each core of the tile 8 kB of
this buffer, which it uses as an input port for the OpenComRTOS drivers. This
means that each core reads the messages meant for it from its part of the MPB.
To send a message each core writes the message directly into the MPB of the
core the message is intended for, i.e. we establish a full mesh on the Intel-SCC,
leaving all the routing decisions to the underlying routing network. Inside the
MPB the data is organised using a lock free ring buffer implementation, where
the writer and reader Task do not need to lock each other out. However, it is still
necessary to prevent that more than one writer tries to gain access to the MPB
in parallel, thus there is one locking operation involved. The lock is represented
by an atomic variable. Having an RTOS means that it is necessary to inform
the reader core that new data has arrived, this is achieved by the writer-node
issuing an Interrupt Request (IRQ) to the reader-node. Upon receiving the IRQ,
the reader-node reads out the data, translates the transfer packet into a local
packet and then passes it to the Kernel-Task for processing.

3.2 TI-C6678

The TI-C6678 contains 8 cores running at 1 GHz, Figure 1 gives a block diagram
of the chip. Each core has 32 kB L1 cache for data and program and an additional



L2 cache of 512 kB (used as SRAM). The 8 cores share also a fast 4 MB SRAM
and external DDR3 memory. The chip has also an on-chip queue management
system, Ethernet switch, DMA and SRIO amongst other, all connected over a
fast TeraNet switching network. The complexity is high and the chip has about
1000 interrupt sources and a 3 level interrupt controller. Impressed, we called it
a “RoC” (Rack On a Chip).

The inter core communication was implemented by using the Queue Man-
agement Sub System (QMSS) available in the chip and exchanging pointers to
blocks of the 4 MB shared SRAM. The queues that are used for this purpose can
issue an interrupt to their CPU if data has arrived, providing an easy scheme to
communicate.

Fig. 1. Texas Instruments 8-core C6678

4 Measurement Results

OpenComRTOS has been ported to quite a number of different CPU architec-
tures. In this section we compare codesize and performance figures of the Intel-
SCC port with the figures of selected other ports. All measurements with the
Intel-SCC system were done using the following configuration: core: 533 MHz,
memory: 800 MHz, mesh: 800 MHz. To allow the cache to initialise on the Intel-
SCC the first measurement in each of the following benchmarks was ignored.



4.1 Code Size

Table 1 gives detailed code size figures, in byte, for our currently available ports
of OpenComRTOS. The Intel-SCC port has a typical code size for a 32 bit
instruction set machine, similar to the MicroBlaze, Leon3, XMOS, and TI-C6678
ports we have done in the past.

Table 1. OpenComRTOS L1 code size figures (in Bytes) obtained for our different
ports

Service MLX16 MicroBlaze Leon3 ARM-CM3 XMOS TI-C6678 Intel-SCC

L1 Hub shared 400 4756 4904 2192 4854 5104 4321
L1 Port 4 8 8 4 4 8 7
L1 Event 70 88 72 36 54 92 55
L1 Semaphore 54 92 96 40 64 84 64
L1 Resource 104 96 76 40 50 144 121
L1 FIFO 232 356 332 140 222 300 191
L1 PacketPool NA 296 268 120 166 176 194

Total L1 Services 1048 5692 5756 2572 5414 5908 4953

4.2 Performance Figures

Next we consider the runtime performance. Table 2 states the elapsed time to
perform what we call a semaphore loop (two Task signalling each other in a loop
using two semaphore Hubs, [2] gives an explanation, Figure 2 shows the applica-
tion diagram). This test gives a very good indication of the latencies introduced
by the OS and gives a good indication of Task scheduling and service request
latencies as each loop consists of 4 context switches, and 4 service requests with
a total of 8 Packet exchanges. The measurements were performed by measur-
ing the loop time 1000 times, using the highest precision timer available in the
system, in case of the NXP CoolFlux the cycle counter of the simulator was
used. In all cases we tried to achieve top performance, thus available caches were
utilised. Furthermore, interrupts were disabled, except the one for the periodic
timer tick. The column ‘Context Size’ of the table gives the number of registers
that has to be saved and the size of these registers, for a user triggered context
switch. The context saved when handling an interrupt has a different size.

4.3 Interrupt Latency Measurements

Another important performance figure, for an RTOS, is the interrupt latency. We
differentiate two types of latencies: IRQ (Interrupt ReQuest) to ISR (Interrupt
Service Routine), and IRQ to Task. The first one measures how long it takes after
an automatic reload counter issued an IRQ until the first useful instruction can
be performed in the ISR, this means that all context saving has been performed



Fig. 2. Application Diagram of the Semaphore Loop Benchmark

Table 2. OpenComRTOS loop times obtained for our different ports

Clock Speed Context Size Memory Location Loop Time Cycles

ARM Cortex M3 50 MHz 16 × 32 bit internal 52.5 µs 2625

NXP CoolFlux NA 70 × 24 bit internal NA 3826

XMOS 100 MHz 14 × 32 bit internal 26.8 µs 2680

Leon3 40 MHz 32 × 32 bit external 136.1 µs 5444

MLX-16 6 MHz 4 × 16 bit internal 100.8 µs 605

Microblaze 100 MHz 32 × 32 bit internal 33.6 µs 3360

TI-C6678 1 GHz 15 × 32 bit L2-SRAM 4.5 µs 4500

Intel SCC 533 MHz 11 × 32 bit external 4.9 µs 2612

already. The IRQ to Task latency represents how long it takes until a high
priority Task can perform the first useful instruction after an IRQ has occurred.
However, these are no single figures because it depends on what the CPU is
currently doing. Thus we collected a few million measurements, and performed
a statistical analysis of them. Table 3 gives the minimal, maximal and the median
(50% value of all measured latencies).

Table 3. OpenComRTOS Interrupt Latencies on an ARM-Cortex-M3 @ 50MHz

IRQ to ISR IRQ to Task

Minimal 300 ns (15 cycles) 12 µs (600 cycles)

Maximal 2140 ns (107 cycles) 25 µs (1250 cycles)

50% 400 ns (20 cycles) 17 µs (850 cycles)

For the Intel-SCC and the TI-C6678 system we presently have only the min-
imal figures for an unloaded system. We have the following interrupt latencies
for these platforms:

– Intel-SCC:

• IRQ to ISR: 656.78 ns (349 cycles)
• IRQ to Task: 10.32 µs (5501 cycles)

– TI-C6678:



• IRQ to ISR: 136 ns (136 cycles)
• IRQ to Task: 1.37 µs (1367 cycles)

Both the Intel-SCC and the TI-C6678 have a larger interrupt latency, in number
of cycles, than e.g. the ARM-Cortex-M3, however they are clocked at a much
higher clock speeds thus the absolute times are better. However, it is clear that
the Intel-SCC was not designed for real-time applications, unlike a micro con-
troller such as the ARM-Cortex-M3. The ARM-Cortex-M3 does a lot of the
necessary Task saving and restoring, as well as interrupt dispatching operations,
using dedicated hardware, while in case of the Intel-SCC and the TI-C6678 it
has all to be done in software.

A point regarding the TI-C6678: this processor has multiple cascaded inter-
rupt controllers (for a potential total of about 1000 interrupt sources), which
have been taken out of the equation as we just measured the latency of C66x
core internal interrupt controller, which provides 16 interrupts, of which 12 can
be freely used for external interrupts.

4.4 Inter Core Communication Performance

To measure the application level inter core communication throughput, i.e. the
usable Task-to-Task bandwidth when developing an application, we performed
the following measurements. The benchmark system consists of two Tasks: a
SenderTask and a ReceiverTask, communicating using a Port-Hub. Figure 3
shows the application diagram of the system. The SenderTask sends an L1-Packet
to the Port-Hub from which the ReceiverTask receives it. The Port-Hub interac-
tions are done using waiting semantics, which means that the SenderTask has to
wait until the Receiver-Task has synchronised with it in the Port-Hub. The Port-
Hub copies the payload data contained in the L1-Packet from the Sender-Task to
the L1-Packet from the Receiver-Task, and then sends acknowledgement packets
to both Tasks. We measured how long it takes the ReceiverTask to receive 1000
times a data packet of a specific size. To perform the initial synchronisation the
ReceiverTask waits for a first communication to take place before determining
the start time. Please note that the SenderTask and ReceiverTask synchronise
in the Port-Hub, thus the SenderTask can only send the next packet, after it has
received the acknowledgement packet that the previous transfer was performed
successfully.

Fig. 3. Application Diagram for the Throughput Measurement



Intel-SCC When distributing the Tasks over different Nodes in the system, the
data will be transferred between the two nodes using link drivers and using the
on-chip communication mechanism. These link drivers translate the L1-Packet
to a Transfer-Packet, and transfer only the used part of the data part of the
L1-Packet. We measured the following different system setups, with different
payload sizes:

– Single-Core: In this setup all Tasks and the Hub are on the same core. Thus
no inter core communication is involved.

– Multi-Core: Afterwards the benchmark was distributed over two nodes, in
the following way:

• Node1: SenderTask
• Node2: ReceiverTask and Port-Hub

In this setup we measured with different numbers of Hops (see [6] for details)
between the two cores:
• No-Hop: Node1 on core 10 and Node2 on core 11
• 1-Hop: Node1 on core 10 and Node2 on core 8
• 8-Hops: Node1 on core 10 and Node2 on core 36

Fig. 4. Intel-SCC Throughput over Packet Payload Size

Figure 4 gives the measured results for the different systems. What sticks out
is that the single core example goes into saturation at around 20 MB/s, while the
distributed versions achieve a higher throughput of up to 33 MB/s. These figures
are similar to the ones reported by Lankes et. al. in [14]. There is also a strange
jump in throughput from payload sizes 128 B to 256 B, for the distributed
version, which we do not observe in the single core version. Furthermore, we see
a strong influence of the routing network which nearly halves the throughput



between the No-Hop and the 8-Hop versions, thus the location of the Nodes and
their distance matters on the Intel-SCC.

The curve labelled ‘Virtual Core 10 to 11’ is moving the data, by transferring
the ownership of a shared buffer from core 10 to core 11. This is done by trans-
ferring the buffer information (address, size, resource-lock-id) from core 10 to
core 11 using a Port-Hub. Once core 11 has this information it locks a resource,
to avoid unintentional access, copies the data, and then releases the lock. The
achieved throughput is about half of what we achieved in the single core version.
The reason for this is that the buffer is placed in shared memory which halves the
achievable throughput. The throughput of the bare version, i.e. without Open-
ComRTOS running, just a main and bare michael, drops from 17.4 MB/s, when
copying from private memory to private memory, to 10.3 MB/s when copying
from shared memory to private memory.

Fig. 5. Multicore semaphore loop test on Intel SCC showing hop delay

Impact of core distance on timings While on the TI chip all cores can
directly communicate (there are only 8 of them) The Intel SCC provides an
additional test possibility because the 48 cores communicate over a NoC with
routers. These routers introduce addition “hop” delays. We have measured the
semaphore loop for all possibilities (from 0 hops for directly connected cores to
8 hops for those furthest apart). The semaphore loop times then range from
15049 cycles to 20684 cycles (compiled with -O3). In itself, these timings are
quite reasonable given the extra hop delays, that range from 280 to 385 cycles
in one direction (calculated by dividing the extra hop delay of a semaphore loop
by 2). This hop delay is not only due to communication latency but also to extra



context switching by the driver and the Kernel-Task, interrupt handling and the
need to invalidate the cache.

TI-C6678 The TI-C6678 evaluation board available to us was clocked at 1 GHz,
thus all measurements were done at this frequency. Another point to mention is
that none of the DMA units provided by the TI-C6678 have been used for these
measurements, thus the DSP-Core had to spend all its cycles to move the data.

Fig. 6. TI-C6678 Throughput over Packet Payload Size

Figure 6 gives the throughput measurements for the TI-C6678 @ 1 GHz,
for both the single core (‘Core 0 to 0’) and the distributed version (‘Core 0
to 1’). A few words regarding the measurement setup. In case of the single core
measurement, the data and the code were completely within the 512 kB large L2-
SRAM of core 0. This is possible because the architecture permits to use the L2
cache as SRAM. For the distributed version we used the Queue Management Sub
System (QMSS) queues [15] to transfer descriptors of transfer packets between
the cores. The queues 652 and 653 were used, generating an interrupt when data
is pending on them. The shared transfer packets were located in the Multicore
Shared Memory (MSM), constituting 4 MB of fast memory shared between
the cores. This memory is part of the Multicore Shared Memory Controller
(MSMC) [16], which interfaces the eight cores to external DDR-SRAM. For the
single core version we achieve a top throughput of 2695 MB/s using packets
with 32 kB payload. The distributed version achieved a maximum throughput
of 1752 MB/s with the same payload. In both cases we have not yet reached the
saturation of the system, thus the total throughput will be higher, if we increase
the packet payload size.

Like for the Intel-SCC we’ve also implemented a measurement of the virtual
bandwidth, using a shared buffer. With a buffer size of 32 kB we achieved a



throughput of 772 MB/s @ 1 GHz , when the shared buffer is located in the
MSM, and we copied to the L2-SRAM of core 1 (‘Virtual Core 0 to 1, MSM to
L2’). If the shared buffer is located in the L2-SRAM of core 0 (‘Virtual Core
0 to 1, L2 to L2’), the throughput we achieve is 45 MB/s @ 1 GHz. Currently
we investigate why the copy between the L2-SRAM of the cores does provide so
little throughput.

When utilising the experimental driver for the EDMA3 peripherals of the
TI-C6678, and EDMA3 unit EMDA3CC0, we achieve a throughput of 4041 MB/s
with a buffer size of 128 kB, transferred between two buffers in the L2-SRAM of
core 0. The advantage of using the DMA unit over using the CPU for copying
or moving data is that during the transfer the CPU can perform other Tasks,
thus the transfer happens in parallel to the processing.

Comparing Intel-SCC and TI-C6678 The best achieved throughput in sin-
gle core measurements on the Intel-SCC was with a packet payload size of 4096 B
where it achieved a throughput of 19.80 MB/s @ 533 MHz. The TI-C6678
achieved with the same packet payload size a throughput of 1148.52 MB/s
@ 1 GHz. Even if clocked at the 533 MHz the TI-C6678 would still achieve
611.88 MB/s, which is more than 30 times faster than what we achieve on the
Intel-SCC.

For the distributed system version the Intel-SCC throughput is 33.57 MB/s @
533 MHz with a packet payload size of 4096 B. The TI-C6678 achieves 512 MB/s
@ 1 GHz which corresponds to 273 MB/s @ 533 MHz.

5 Conclusions & Further Work

The first part of the paper explained the design principles of OpenComRTOS
that minimise the impact of the distributed processing on the hard real-time
behaviour. Due to being built around the concept of prioritsed packet switching
the performance degradation caused by additional middleware layers are avoided
in OpenComRTOS systems. This not only results in a better performance, but
also in smaller memory requirements, less power consumption and more real-
time predictability. The architecture of OpenComRTOS is ideally suited for the
multi/many cores systems such as the Intel-SCC and the TI-C6678, because it
makes it very easy to use all processing power without having to worry about
the details of the underlying hardware.

What has become clear in the performance measurements is that both the
Intel-SCC and the TI-C6678 are complex architectures requiring a lot of at-
tention to achieve best performance and predictable real-time behaviour. The
developer must be very careful in placing data and code in memory and selecting
the communication mechanism. In case of the Intel-SCC the access to the DDR3
memory has a very long latency with a minimum of 86 wait states, and is only
available over the system wide shared routing network, which causes additional
wait states. The approach taken in the TI-C6678 with a dedicated switching
network (TeraNet) provides a much better throughput to the shared memory



resources. Additionally, each core has it’s own 512 kB of L2-SRAM which can
be used to store code and local data, an approach not possible in case of the
Intel-SCC. A local RAM of 512 kB might sound little but for OpenComRTOS
it is more than sufficient, due to its small code size of around 5 kB. This leaves
in many cases sufficient space for user applications and device drivers.

The tests have also shown that shared memory presents some pitfalls, similar
to the ones global variables represent in multi-threaded environments. Not only
makes it the bus structure very complex, it also makes it slow compared with
the speed of the CPUs and it poses more safety and security risks, e.g. the
cache must also be invalidated at the right time. Therefore, having large and
local low wait state memory for each core with a fast dedicated communication
network set up in a point-to-point topology with DMAs improves performance,
and improves reliability when this memory can be marked as private to the
core, thus preventing external cores from accessing and potentially corrupting
it. This is an important issue for safety and security critical systems. Finally,
multi/manycore designers should be aware that concurrency even on a single core
combined with low latency is beneficial as it allows to reduce the grain size of
the computations without suffering much overhead. It also increases throughput
by overlapping computation with communication.

The communication infrastructure provided by the TI-C6678, with its pack-
etisation and hardware-queue support, is similar to the internal architecture
of OpenComRTOS, whereby all interactions are implemented using packet ex-
changes.

5.1 Further Work

Given the abundancy of hardware resources on modern multicore chips, research
is focusing on dynamic resource scheduling, whereby a resource is not just CPU
time but can also be any of the hardware capabilities. To achive this we are
using a generalised version of the distributed priority inheritance algorithm in
OpenComRTOS. This work is partly done in the recent Artemis CRAFTERS
project.

Acknowledgements

The formal modeling of OpenComRTOS was partly funded under an IWT
project of the Flemish Government in Belgium. The Intel-SCC system we used
for development was supplied by Intel Inc, in their data centre. The TI-C6678
target hardware was provided by Thales.

References

1. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002. 1



2. Bernhard H.C. Sputh, Eric Verhulst, and Vitaliy Mezhuyev. OpenComRTOS:
Formally developed RTOS for Heterogeneous Systems. In Ian R. East, David
Duce, Mark Green, Jeremy M. R. Martin, and Peter H. Welch, editors, Embedded
World Conference 2010, pages 201–218, March 2010. 1, 4.2

3. E. Verhulst, R.T. Boute, J.M.S. Faria, B.H.C. Sputh, and V. Mezhuyev. For-
mal Development of a Network-Centric RTOS. Software Engineering for Reliable
Embedded Systems. Springer, Amsterdam Netherlands, 2011. 1

4. C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–
677, 1978. 1

5. Eric Verhulst. Virtuoso: providing sub-microsecond context switching on dsps with
a dedicated nanokernel. In Proceeding of the International Conference on Signal
Processing Applications and Technology, Santa Clara, September 1993. 1

6. Intel Labs. The SCC Programmer’s Guide, 2012. http://
communities.intel.com/servlet/JiveServlet/downloadBody/
5684-102-8-22523/SCCProgrammersGuide.pdf. 1, 4.4

7. Texas Instruments. TMS320C6678 Multicore Fixed and Floating-Point Digital Sig-
nal Processor (Rev. C). http://www.ti.com/litv/pdf/sprs691c. 1

8. Loic P. Briand and Daniel M. Roy. Meeting Deadlines in Hard Real-Time Systems:
The Rate Monotonic Approach. IEEE, 1999. 2.1

9. C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. journal of the association for computing machinery,
20(1):46-61, january 1973. 1973. 2.1

10. Mark Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and Michael González Har-
bour. A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems. Springer, August 1993. 2.1

11. Mast, January 2011. http://mast.unican.es, last visited: 20.01.2011. 2.1
12. L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An

approach to real-time synchronization. IEEE Trans. Comput., 39(9):1175–1185,
September 1990. 2.2

13. M.B. Jones. What really happened on mars, 1997. 2.2
14. Stefan Lankes, Pablo Reble, Carsten Clauss, and Oliver Sinnen. Shared Virtual

Memory for the SCC. In Andreas Troeger, Peter & Polze, editor, Proceedings of the
4th MARC Symposium, Hasso Plattner Institute for Software Systems Engineering
(HPI) in Potsdam, January 2012. Hasso Plattner Institute, University of Potsdam,
Germany. 4.4

15. Texas Instruments. KeyStone Architecture Multicore Navigator, September 2011.
http://www.ti.com/lit/ug/sprugr9d/sprugr9d.pdf. 4.4

16. Texas Instruments. KeyStone Architecture Multicore Shared Memory Con-
troller (MSMC), October 2011. http://www.ti.com/lit/ug/sprugw7a/
sprugw7a.pdf. 4.4

http://communities.intel.com/servlet/JiveServlet/downloadBody/5684-102-8-22523/SCCProgrammersGuide.pdf
http://communities.intel.com/servlet/JiveServlet/downloadBody/5684-102-8-22523/SCCProgrammersGuide.pdf
http://communities.intel.com/servlet/JiveServlet/downloadBody/5684-102-8-22523/SCCProgrammersGuide.pdf
http://www.ti.com/litv/pdf/sprs691c
http://mast.unican.es
http://www.ti.com/lit/ug/sprugr9d/sprugr9d.pdf
http://www.ti.com/lit/ug/sprugw7a/sprugw7a.pdf
http://www.ti.com/lit/ug/sprugw7a/sprugw7a.pdf

	A Formalised Real-time Concurrent Programming Model for Scalable Parallel Programming

